Modified Components of RNA. The Molecular and Crystal Structure of 5-Carboxymethylaminomethyl-2-thiouridine (s²cmnm⁵U)

Michał W. Wieczorek* and Grzegorz D. Bujacz

Institute of Technical Biochemistry, Technical University of Łódź, Stefanowskiego 4/10, 90-924 Łódź, Poland

Dorota A. Adamiak

Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland

Andrzej Małkiewicz and Barbara Nawrot

Institute of Organic Chemistry, Technical University of Łódź, Żwirki 36, 90-924 Łódź, Poland

Received 1 March 1994; revised 20 April 1994

ABSTRACT

The structure of the title compound 1 has been determined by X-ray analysis. The following crystal data were found: orthorhombic, $P2_12_12_1$, a = 5.243(2), b = 24.864(4), and c = 37.083(6) Å. Three molecules of the compound with four molecules of water are present in the independent part of the unit cell. The sugar ring puckering is ³E for the molecules A and C and ³T₂ for the molecule B. The conformation of the hydroxymethylene group is g^+ and g^- for B and A, C, respectively. The torsion angles χ for all molecules are in the range of the anti conformation. In the crystal lattice of 1 both the intra-and intermolecular hydrogen bonding systems occur.

INTRODUCTION

5-Carboxymethylaminomethyl-2-thiouridine 1 (s²cmnm⁵U) (Figure 1) has been discovered in several sequences of tRNAs from B. subtilis [1], and it is a by-product of the biosynthesis pathway of 5-methylaminomethyl-2-thiouridine $(s^2 mnm^5 U)$ in E. coli strains [2]. Both modified nucleosides are located in the first position of tRNAs anticodon $(U_{34}^{*},$ "wobble position"), and both distinctively influence decoding capacity of the biopolymer [3-5]. The function of U_{34}^{*} as an identity element, by which tRNAs recognize their cognate aminoacyl tRNA synthetase (RS), has been recently experimentally confirmed [6,7]. Moreover, the status of the post-transcriptional modification of U_{34} in $tRNA_{(mnm^5s^2U)}^{Glu}$ from E. coli and $tRNA_{(U_{34})}^{Glu}$ from B. subtilis seems to be essential also for the mentioned tRNAs recognition/binding with glutamyl tRNA reductase (GluRT), the key step of chlorophyll bio-synthesis via the lately discovered C_5 pathway [8].

To correlate structural features of U_{34}^{*} with its biological function, the conformation and III-D structure dynamics of variously 5-, 2-substituted uridines [9–12], as well as oligoribonucleosides with these units as components [12–14], have been determined by NMR and CD spectroscopy. Recently, striking progress in the cocrystallization of tRNAs with aminoacyl tRNA synthetases has been

^{*}To whom correspondence should be addressed.

FIGURE 1 5-carboxymethylaminomethyl-2-thiouridine (1).

TABLE 1 Crystal Data and Experimental Details

Molecular formula Formula weight Crystallization solvent Space group a (Å) b (Å) c (Å) Z V (Å ³) μ (cm ⁻¹) D_c (g/cm ³) Crystal dimensions (mm) Maximum 2θ (°) Radiation, λ (Å) Scan mode Scan width (°) hkl ranges:	$3C_{12}H_{17}N_3O_7S \cdot 4H_2O$ 347.34 methanol-isopropanol-water $P_{2_12_12_1}$ 5.243(2) 24.864(4) 37.083(5) 4 4834(2) 22.1 1.531 0.04, 0.05, 0.3 130 Cu K_{α} , 1.54178 $\omega/2\theta$ $0.70 + 0.14 \tan \theta$ h = 0.6 k = 0.29
No. of reflections measured: total independent $l \ge 2\sigma$ (<i>l</i>)	4789 3762 2829

achieved, and the molecular structures of several such complexes (tRNA-RS) were successfully refined [15].

In this context, comparison of the conformation in the solid state and in the solution of a representative series of wobble uridines should be valuable [21]. In connection with our previous work on the X-ray structure of cmnm⁵U [16], we present here the molecular and crystal structure of its 2thioanalog 1.

RESULTS AND DISCUSSION

The studied nucleoside crystallizes as a zwitterion. Neither of the oxygen atoms of the carboxyl function is protonated, and the similar lengths of bonds within the carboxyl function indicate delocalization of a negative charge between both oxygen atoms. The nitrogen atom is bound to four atoms and has a positive charge. It is noteworthy that the "decarboxylated" analog of 1, 5-methylaminomethyl-2-thiouridine (s^2mnm^5U) [18b], and also 5aminomethyluridine (nm^5U) [19] crystallize as betaines, which are formed by proton transfer from the N₃H imine to the amine function.

Nonhydrogen atom coordinates and equivalent temperature parameters are presented in Table 2. Table 3 includes coordinates of hydrogen atoms. A general view of the refined independent part of the unit cell of compound 1, with its atom numbering scheme, is shown in Figure 2. The three molecules of 1 with solvent are also presented separately to show intra- and intermolecular hydrogen bonding (Figure 3a-c).

The nucleoside crystallizes in the space group $P2_12_12_1$ with three molecules of the compound and four molecules of water in the asymmetric part of the unit cell. In this context, 1 exhibits a more complex crystal structure than its 2-oxo-analog, which crystallized in space group $P2_1$, with one water molecule in the asymmetric part of the unit cell [16].

The thermal vibrations of the oxygen atoms O1w and O2w are evidently weaker in comparison with analogous data for O3w and O4w, reflecting stronger binding of the first two water molecules with their nucleoside counterparts.

The complex H-bonding system distinctively influences the crystal structure of nucleoside 1. Table 4 lists selected hydrogen contacts. All hydrogen contacts not greater than 3.00 Å are given in the supplementary material.

Tables 5–7 contain bond lengths, bond angles, and selected torsion angles, respectively. The torsion angles χ_{CN} (O1'–C1'–N1–C2) are –160(1), -159(1), and –163(1)° for the molecules *A*, *B*, and *C*, respectively and fall in the range of the *anti* conformation. Generally, these values are only slightly different from the respective data obtained for the 2-oxo-analog of **1** [16] and speak for relative freedom of the conformation around the *N*-glycosidic bond [16].

The sugar ring puckering is ${}^{3}E$ for the molecules A and C (for C, this is slightly deformed toward ${}^{3}T_{2}$) and ${}^{3}T_{2}$ for the molecule B. In terms of pseudorotation [25], the ribofuranose ring conformation is characterized by the parameters P = 19(1), 10(1), $15(1)^{\circ}$ and $\tau_{m} = 42(1)$, 37(1), 42(1) [26] for molecules A, B, and C, respectively. Figures 3a-c present separately the molecules of the asymmetric unit to show the view of the ribofuranose rings with the hydrogen bonding scheme of the respective molecules A, B, and C.

5-Methylaminomethyl-2-thiouridine [18b], as well as methoxy-2-thiouridine [20] and 2-thiouri-

							·	•	
	x	у	Z	U(eq)		x	у	Z	U(eq)
S2A	4841(9)	784(1)	892(1)	58(1)	S2B	2471(9)	-2267(1)	1450(1)	69(1)
01′A	763(15)	-435(3)	286(2)	34(2)	01′ <i>B</i>	-1277(15)	-3783(3)	1681(2)	41(2)
02'A	2047(19)	648(3)	~69(2)	49(2)	02′ <i>B</i>	181(19)	-3614(3)	898(2)	52(2)
03'A	3986(16)	-97(3)	-552(2)	40(2)	O3' <i>B</i>	2418(17)	-4597(3)	1060(2)	48(2)
05' <i>A</i>	- 1686(15)	-1271(3)	-103(2)	36(2)	05' <i>B</i>	584(23)	-4680(4)	2056(2)	78(3)
04A	9631(26)	-776(4)	1339(3)	108(4)	O4B	7934(19)	-2788(4)	2458(2)	66(3)
014 <i>A</i>	12148(17)	-2820(3)	484(2)	46(2)	014 <i>B</i>	11014(19)	-4578(4)	3263(2)	69(3)
015A	12131(17)	-1932(3)	432(2)	49(2)	015 <i>B</i>	10907(17)	-3768(4)	3021(3)	60(3)
N1 <i>A</i>	4259(17)	-228(3)	669(2)	27(2)	N1 <i>B</i>	2164(19)	-3203(3)	1808(2)	34(2)
N3A	7234(21)	-99(4)	1121(2)	45(2)	N3 <i>B</i>	5174(23)	-2594(4)	2008(2)	49(3)
N11A	7093(19)	-1829(3)	544(2)	37(2)	N11 <i>B</i>	5819(17)	-3781(4)	2917(2)	29(2)
C1'A	2316(22)	-11(4)	403(2)	26(2)	C1′ <i>B</i>	292(26)	-3387(4)	1529(3)	42(3)
C2'A	3610(24)	239(4)	71(2)	34(3)	C2'B	1712(24)	-3637(4)	1209(2)	34(3)
C3'A	35 38(23)	-232(4)	-180(3)	30(2)	C3'B	1790(22)	-4233(4)	1324(3)	36(3)
C4'A	966(21)	-480(4)	-108(3)	26(2)	C4′ <i>B</i>	-765(25)	-4300(4)	1504(3)	41(3)
C5'A	750(25)	-1060(4)	-216(3)	38(3)	C5'B	-1158(30)	-4754(5)	1767(3)	60(4)
C2A	5389(23)	134(4)	897(3)	36(3)	C2B	3275(27)	-2711(5)	1763(3)	49(3)
C4A	7977(31)	-623(5)	1131(3)	55(4)	C4B	6224(28)	-2927(5)	2267(3)	45(3)
C5A	6712(22)	-970(4)	888(3)	31(2)	C5 <i>B</i>	4942(24)	-3450(4)	2293(3)	37(3)
C6A	4893(22)	-767(4)	675(3)	29(2)	C6 <i>B</i>	3019(24)	-3562(4)	2067(2)	33(3)
C10A	7522(28)	-1551(4)	894(3)	44(3)	C10 <i>B</i>	6091(23)	-3884(5)	2525(3)	43(3)
C12A	8170(23)	-2374(4)	539(4)	44(3)	C12B	7024(25)	-4221(5)	3135(3)	42(3)
C13A	11083(25)	-2380(4)	472(3)	37(3)	C13B	9952(25)	-4185(5)	3136(3)	42(3)
S2C	12912(9)	-1693(1)	2705(1)	65(1)	01w	7934(27)	-1613(4)	2035(3)	109(4)
01'C	17242(15)	-1686(3)	3714(2)	33(2)	O2w	4620(50)	-5421(6)	2420(3)	244(10)
02'C	16200(17)	-626(3)	3320(2)	51(2)	O3w	787(61)	-5419(8)	2785(7)	350(16)
03'C	14250(16)	-445(3)	4014(2)	41(2)	O4w	13253(50)	-865(8)	1876(6)	293(11)
05'C	19734(16)	-1686(3)	4396(2)	40(2)					
04C	7487(17)	-2948(3)	3363(2)	51(2)					
014 <i>C</i>	5888(17)	-3368(3)	4902(2)	42(2)					
015 <i>C</i>	5949(14)	-2735(3)	4483(2)	42(2)					
N1C	13615(18)	-1995(3)	3396(2)	31(2)					
N3C	10337(19)	-2403(4)	3083(2)	40(2)					
N11C	10903(18)	-2804(3)	4347(2)	33(2)					
	15605(22)	-1578(4)	3409(3)	33(2)					
	14547(26)	-1018(4)	3469(3)	38(3)					
$C3^{\prime}C$	14549(21)	-975(4)	3880(3)	28(2)					
$C4^{\prime}C$	1/118(21)	-1235(4)	3969(3)	28(2)					
05.0	1/282(24)	-1447(4)	4346(3)	35(3)					
020	12298(23)	-2049(4)	3075(3)	31(3)					
	9520(22)	-2/01(5)	33/3(3)	38(3)					
	11157(21)	-2688(4)	3687(2)	24(2)					
	13123(22)	-2332(4)	3081(3)	31(2)					
	10511(25)	-3058(4)	3986(3)	40(3)					
0120	9811(23)	-3136(5)	404/(3)	46(3)					
U13C	6973(23)	-3075(4)	4679(3)	30(2)					

TABLE 2 Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Coefficients ($Å^2 \times 10^3$)

Equivalent isotropic U is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

		and the second state of th					
	<u>x</u>	У	Z		x	у	Z
H2oA	304(4)	98(1)	0(1)	HO1C	1150(5)	-337(1)	397(1)
H3oA	263(4)	2(1)	-66(1)	HO2C	858(5)	-318(1)	396(1)
H50A	- 190(3)	-164(1)	-18(1)	H21C	1039(5)	-354(2)	464(1)
H3nA	810(4)	15(1)	129(1)	H22C	1061(5)	-293(2)	487(1)
H11A	520(4)	-183(1)	47(1)	H2oB	-167(4)	-379(1)	92(1)
H12A	813(4)	~164(1)	36(1)	H30 <i>B</i>	96(3)	-464(1)	90(1)
H1'A	125(4)	26(1)	52(1)	H50 <i>B</i>	122(4)	-495(1)	220(1)
H2'A	540(5)	37(1)	12(1)	H3nB	571(4)	-225(1)	199(1)
H3'A	480(5)	-48(1)	-11(1)	H11 <i>B</i>	404(3)	-376(1)	298(1)
H4'A	-47(4)	-23(1)	-18(1)	H12B	661(3)	-345(1)	298(1)
H5'A	192(5)	-122(1)	-7(1)	H1′ <i>B</i>	~52(5)	-305(1)	145(1)
H5"A	110(5)	-117(1)	-47(1)	H2' <i>B</i>	341(5)	-348(1)	116(1)
H6A	372(4)	-98(1)	49(1)	H3' <i>B</i>	322(4)	-426(1)	152(1)
HO1A	646(6)	-176(1)	110(1)	H4' <i>B</i>	-217(5)	-435(1)	129(1)
HO2A	934(6)	-157(1)	95(1)	H5' <i>B</i>	-283(6)	-478(1)	186(1)
H21A	755(5)	-258(1)	77(1)	H5″B	~53(6)	-511(2)	166(1)
H22A	737(5)	-257(1)	32(1)	H6 <i>B</i>	201(5)	-392(1)	208(1)
H2oC	1628(3)	-24(1)	337(1)	HO1B	520(5)	-425(1)	246(1)
H3o <i>C</i>	1481(3)	-22(1)	389(1)	HO2B	793(5)	-392(2)	246(1)
H5oC	2037(3)	-184(1)	461(1)	H21 <i>B</i>	590(5)	-420(1)	339(1)
H3nC	946(4)	-243(1)	284(1)	H22B	654(5)	-459(1)	301(1)
H11C	1276(4)	-269(1)	438(1)	H11w	879(5)	-147(1)	181(1)
H12C	974(4)	-250(1)	434(1)	H12w	666(5)	-146(1)	212(1)
H1′C	1662(4)	-158(1)	318(1)	H21w	588(10)	-523(2)	234(1)
H2'C	1268(5)	-103(1)	338(1)	H22w	437(10)	-532(1)	265(1)
H3'C	1319(4)	-120(1)	398(1)	H31w	-82(12)	-542(2)	272(2)
H4'C	1865(4)	-94(1)	393(1)	H32w	110(12)	-512(2)	288(2)
H5'C	1614(5)	-177(1)	434(1)	H41w	1448(10)	-61(2)	174(1)
H5"C	1632(5)	-121(1)	452(1)	H42w	1431(10)	-118(2)	197(1)
H6C	1476(4)	-237(1)	385(1)				

 TABLE 3
 Hydrogen Atom Coordinates (×10³)

FIGURE 2 Thermal ellipsoidal view and atom numbering scheme of the asymmetric part of the unit cell of 1.

FIGURE 3 The individual hydrogen bonding schemes of each molecule of the asymmetric unit of 1 with atom numbering; the intramolecular bonds are marked by dotted lines, and the intermolecular ones are denoted by dashed lines. Atoms with underlined names are from symmetrical molecules (Table 4).

FIGURE 3 Continued

dine-oxyacetic acid methyl ester [20], the 2-thioanalogs of two wobble position uridines bearing 5-substituents coplanar with the heterobase ring, exhibit also the ${}^{3}E$ conformation in the solid state.

One should also notice that all 2-thiouridines hitherto studied exist in solution predominantly as E conformers [5,10–12]. The accumulated results strongly suggest that the 2-thio substituent shifts the conformation of uridines toward the biologically important ${}^{3}E$ conformation [5,10–12], either in solution or in the solid state. The torsion angles O5'-C5'-C4'-O4' are 60(1), 61(1), and 65(1)°, and those of $05'-C5'-C4'-C3'(\gamma)$ are 174(1), 61(1), and 179(1)° for molecules A, B, and C, respectively. Thus, the hydroxymethylene group prefers the g conformation in molecule B, but g^- for A and C[21]. The torsion angle N11-C10-C5-C6, which describes the spatial relation between the 5-substituent and the heterobase ring, is 27(2) and $38(2)^{\circ}$ for molecules A and C, respectively. The analogous angle for the B molecule is equal to $-118(1)^{\circ}$ and corresponds to that determined for the 2-oxoanalog of 1 [16]. The bond lengths (Table 5) do not differ from those registered for other wobble 2-thiouridines studied so far [18–20].

Three almost flat fragments are present in the molecule of nucleoside 1 (Table 8). The first is formed by the atoms of the heterobase ring (plane

1), the second is formed by four atoms of the sugar moiety (plane 2), and the third is the carboxyl group of the amino acid residue (plane 3). The spatial structure of the nucleoside 1 can be represented by means of the angles between these planes. Leastsquares planes, standard deviations of atoms, and dihedral angles between planes are listed in Table 8. Dihedral angles between planes 1 and 2 are 69.6(4) and $70.0(4)^\circ$, respectively, for molecules A and C. The analogous angle for molecule B is distinctively higher $(81.2(4)^\circ)$ and indicates an almost perpendicular arrangement of the mentioned fragments.

The "skew" conformation of the 5-substituent is characterized also by three different values of the torsion angle between planes 1 and 3, which are 55.2(5), 39.3(4), and $48.9(4)^{\circ}$ for conformers A, B, and C, respectively.

In conclusion, the presence of the three conformers (A, B, and C) in the independent part reflects relative flexibility of the nucleoside **1** structure, although the sugar moiety seems to be more rigid than its other fragments.

The role of post-transcriptional modification of U_{34} can be discussed in terms of an influence of its 2- and 5-substituents on the geometry and dynamics of the tRNA anticodon arm [13], either via interaction of skew 5-substituents with the sugar-

x	Н	Ŷ	Х–Н(Å)	HY(Å) X	Y(Å)	(XH Y)	(°) Symmetry
02'A	H2oA	014C	1.02(3)	1.74(2) 2	2.75(1)	168(2)	1− <i>X</i> , 0.5+ <i>Y</i> , 0.5 <i>Z</i>
03'A	НЗоА	O3' <i>C</i>	0.87(3)	1.88(2) 2	2.70(1)	156(2)	1.5– <i>X</i> , – <i>Y</i> , <i>Z</i> –0.5
O5'A	H5oA	014 <i>A</i>	0.95(3)	1.84(2) 2	2.74(1)	155(2)	X-1.5, -0.5-Y, -Z
N3A	H3nA	014 <i>B</i>	0.98(4)	1.86(2) 2	2.78(1)	156(2)	2- <i>X</i> , 0.5+ <i>Y</i> , 0.5- <i>Z</i>
N11A	H11A	O15A	1.03(4)	1.63(3) 2	2.65(1)	167(2)	X-1, Y, Z
N11A	H12A	O5'A	1.00(3)	1.94(2) 2	2.84(1)	149(2)	1+ <i>X</i> , <i>Y</i> , <i>Z</i>
N11A	H12A	O15A	1.00(3)	2.24(3) 2	2.69(1)	105(2)	
C6A	H6A	01' <i>A</i>	1.06(5)	2.19(3) 2	2.73(1)	109(2)	
C6A	H6A	O15A	1.06(5)	2.52(3) 3	3.36(1)	136(2)	X-1, Y, Z
C10A	HO2A	O4A	0.98(6)	2.45(4) 2	2.77(2)	98(2)	
O3' <i>B</i>	H3o <i>B</i>	03' <i>A</i>	0.97(3)	1.78(2) 2	2.71(1)	160(2)	X-0.5, -0.5-Y, -Z
O3' <i>B</i>	H3o <i>B</i>	02′ <i>B</i>	0.97(3)	2.59(2) 2	2.78(1)	91(2)	
05' <i>B</i>	H5o <i>B</i>	O2w	0.92(3)	2.28(6) 3	3.11(2)	149(2)	
O5′ <i>B</i>	H50B	O3w	0.92(3)	2.46(6) 3	3.27(3)	146(3)	
N3 <i>B</i>	H3nB	O1w	0.91(4)	1.97(6) 2	2.84(2)	159(3)	
N11 <i>B</i>	H11 <i>B</i>	015 <i>B</i>	0.96(3)	1.65(3) 2	2.60(1)	171(2)	X-1, Y, Z
N11 <i>B</i>	H11 <i>B</i>	C13 <i>B</i>	0.96(3)	2.47(5) 3	3.34(2)	151(2)	X-1, Y, Z
N11 <i>B</i>	H12B	O15B	0.94(4)	2.39(3) 2	2.70(1)	98(2)	
N11 <i>B</i>	H12B	04 <i>C</i>	0.94(4)	1.97(2) 2	2.79(1)	146(2)	
C6 <i>B</i>	H6 <i>B</i>	01 <i>'B</i>	1.05(4)	2.31(3) 2	2.72(1)	102(2)	
C6 <i>B</i>	H6B	05' <i>B</i>	1.05(4)	2.03(4) 3	3.06(2)	169(3)	
03' <i>C</i>	H3o <i>C</i>	03' <i>B</i>	0.78(3)	2.12(2) 2	2.75(1)	137(2)	2-X, 0.5+Y, 0.5-Z
O3' <i>C</i>	H3o <i>C</i>	02' <i>C</i>	0.78(3)	2.47(2) 2	2.81(1)	108(2)	
05' <i>C</i>	H5o <i>C</i>	014 <i>C</i>	0.94(3)	1.91(2) 2	68(1)	137(2)	1.5+ <i>X</i> , -0.5- <i>Y</i> , 1- <i>Z</i>
N3C	H3nC	04 <i>B</i>	1.02(3)	1.86(3) 2	2.81(1)	154(2)	
N11C	H11C	015C	1.02(3)	1.72(3) 2	. .70(1)	160(2)	1+ <i>X</i> , <i>Y</i> , <i>Z</i>
N11C	H12C	O5' <i>C</i>	0.98(3)	2.02(2) 2	1.85(1)	141(2)	X-1, Y, Z
N11C	H12C	015C	0.98(3)	2.14(2) 2	65(1)	111(2)	
C5' <i>C</i>	H5' <i>C</i>	015 <i>C</i>	1.00(5)	2.46(2) 3	32(1)	143(2)	1+ <i>X</i> , <i>Y</i> , <i>Z</i>
C6 <i>C</i>	H6C	01'C	1.06(5)	2.20(3) 2	69(1)	106(2)	
O1w	H11w	04 <i>A</i>	1.00(4)	2.51(5) 3	.43(2)	154(3)	
O1w	H12w	O4w	0.83(5)	2.48(6) 3	1.14(3)	137(3)	X-1, Y, Z
O2w	H22w	O3w	0.88(5)	1.96(7) 2	42(4)	111(4)	
O2w	H22w	O4w	0.88(5)	2.55(6) 3	.05(3)	116(4)	2- <i>X</i> , <i>Y</i> -0.5, 0.5- <i>Z</i>
O3w	H31w	O4w_	0.88(9)	2.26(9) 2	70(4)	111(4)	1-X, Y-0.5, 0.5-Z
O3w	H32w	014 <i>B</i>	0.86(8)	1.94(7) 2	74(2)	156(4)	X-1, Y, Z
O4w	H42w	O1w	1.02(8)	2.20(7) 3	i. 14(3)	152(3)	1+ <i>X</i> , <i>Y</i> , <i>Z</i>

 TABLE 4
 Selected Hydrogen Contacts

TABLE 5 Bond Lengths (Å)

			Molecules						
		А	В	С			A	В	С
S2	C2	1.64(1)	1.66(1)	1.66(1)	N3	C2	1.40(2)	1.38(2)	1.35(2)
O1′	C1′	1.40(1)	1.40(1)	1.45(1)	N3	C4	1.36(2)	1.38(2)	1.37(1)
O1′	C4′	1.47(1)	1.47(1)	1.47(1)	N11	C10	1.49(1)	1.48(1)	1.49(1)
O2′	C2′	1.41(1)	1.41(1)	1.42(1)	N11	C12	1.47(1)	1.50(2)	1.50(1)
O3′	C3′	1.44(1)	1.37(1)	1.42(1)	C1′	C2′	1.54(1)	1.53(2)	1.52(2)
O5′	C5′	1.44(2)	1.42(2)	1.43(2)	C2'	C3′	1.50(1)	1.54(1)	1.53(2)
O4	C4	1.22(2)	1.19(2)	1.23(2)	C3′	C4′	1.51(2)	1.51(2)	1.53(2)
014	C13	1.23(1)	1.22(2)	1.24(1)	C4′	C5′	1.50(1)	1.51(2)	1.50(2)
O15	C13	1.25(1)	1.23(2)	1.24(1)	C4	C5	1.41(2)	1.47(2)	1.45(1)
N1	C1′	1.52(1)	1.50(2)	1.47(1)	C5	C6	1.34(2)	1.34(2)	1.36(2)
N1	C2	1.37(1)	1.36(2)	1.38(1)	C5	C10	1.51(1)	1.51(2)	1.48(1)
N1	C6	1.38(1)	1.39(1)	1.37(1)	C12	C13	1.55(2)	1.54(2)	1.50(2)

TABLE 6 Bond Angles (°)

				Molecules	
			A	В	С
C1′	O1′	C4′	108.9(8)	109.2(8)	109.6(8)
C1′	N1	C2	117.3(8)	118.0(9)	116.8(8)
C1′	N1	C6	121.1(8)	119.6(8)	122.5(8)
C2	N1	C6	121.6(9)	121.6(9)	120.6(9)
C2	N3	C4	127.6(10)	128.2(11)	127.2(10)
C10	N11	C12	112.4(9)	111.2(9)	112.3(8)
01′	C1′	N1	108.9(8)	108.8(9)	108.4(8)
O1′	C1′	C2'	108.2(8)	108.2(9)	105.9(9)
N1	C1′	C2′	111.6(8)	109.9(9)	113.1(9)
O2′	C2′	C1′	109.3(8)	110.0(9)	110.6(9)
O2′	C2′	C3′	108.8(9)	106.3(8)	109.9(9)
C1′	C2′	C3′	99.8(8)	100.9(8)	102.2(9)
O3′	C3′	C2′	114.2(9)	116.3(9)	114.5(9)
O3′	C3′	C4′	114.3(9)	117.2(9)	114.5(9)
C2′	C3′	C4′	103.5(9)	101.8(9)	100.7(9)
O1′	C4′	C3′	102.1(8)	105.3(9)	102.9(8)
01′	C4′	C5′	109.5(9)	110.0(9)	109.3(9)
C3′	C4′	C5′	114.4(9)	119.5(10)	113.6(9)
O5′	C5′	C4′	109.8(9)	107.7(10)	108.6(9)
S2	C2	N1	124.4(8)	125.1(9)	124.2(8)
S2	C2	N3	122.3(8)	120.3(9)	120.7(8)
N1	C2	N3	113.2(9)	114.6(10)	115.1(9)
O4	C4	N3	121.3(12)	122.5(12)	121.0(10)
O4	C4	C5	123.1(13)	124.2(12)	123.3(10)
N3	C4	C5	115.7(11)	113.2(11)	115.6(10)
C4	C5	C6	118.8(11)	119.2(10)	116.8(9)
C4	C5	C10	116.4(10)	119.3(10)	117.0(9)
C6	C5	C10	124.9(10)	120.6(10)	126.2(9)
N1	C6	C5	123.2(10)	122.9(10)	123.5(10)
N11	C10	C5	113.0(9)	113.4(9)	112.1(9)
N11	C12	C13	113.0(10)	112.3(10)	112.5(9)
014	C13	015	126.7(11)	128.7(12)	126.4(10)
O14	C13	C12	116.8(10)	114.2(11)	116.6(10)
O15	C13	C12	116.4(10)	117.1(11)	116.9 (10)

phosphate backbone [18] or the contribution of the 2-thio group to the restriction of the local conformation $({}^{3}E)$ [5,10–12] and enhancement of the stacking forces [10–12].

In this context, the presented results of the studies on the conformation and crystal structure of nucleoside 1 do not contradict these statements.

EXPERIMENTAL

5-Carboxymethylaminomethyl-2-thiouridine 1 was synthesized according to the previously reported procedure [17]. The crystallization of sample 1 was achieved by a slow evaporation of the more volatile solvent from an isopropanol-methanol and water mixture (pH 5). Although this procedure was found as optimal, the nucleoside crystallized in the form of thin needles, and it somewhat conditioned the process of the data collection and methodology of the structure refinement.

The crystal data and experimental details are

TABLE 7	Torsional /	Angles	Including	Hydrogen	Atoms	of
Hydroxyl G	roups (°)	-	-			

		Deviation (Esd) (Å)						
Plane	Atom	Molecule A	Molecule B	Molecule C				
1	N1 C2 N3 C4 C5 C6 M1=	0.007(8) -0.001(11) -0.005(9) 0.005(13) 0.010(11) -0.018(11) 0.6985(30)	-0.004(8) 0.029(12) -0.022(10) 0.019(12) 0.003(11) -0.005(10) 0.6557(33)	-0.042(8) 0.038(10) 0.025(9) -0.077(11) 0.027(10) 0.035(10) 0.6126(34)				
_	M2= M3= D=	-0.6923(30) -0.2676(193)	-0.3747(43) -0.6555(33) -0.6636(486)	-0.7125(29) -0.3422(38) 3.6390(593)				
2	C1' C2' C4' 01' M1= M2= M3= D=	-0.001(10) 0.001(11) 0.000(10) 0.000(7) -0.7667(37) 0.6336(43) -0.1037(69) -1.1024(62)	-0.046(12) 0.020(10) -0.027(12) 0.018(7) -0.7497(36) 0.2004(76) -0.6308(48) -5.3321(645)	-0.023(11) 0.018(12) -0.014(10) 0.011(7) 0.7822(36) 0.4149(58) -0.4648(53) -0.0815(963)				
3	C12 C13 O14 O15 M1= M2= M3= D=	-0.011(14) 0.023(11) -0.004(7) -0.004(7) -0.1393(74) -0.0867(48) -0.9865(11) -2.0461(536)	-0.003(11) 0.011(11) -0.002(7) -0.004(10) 0.0350(65) -0.4067(53) -0.9129(23) -6.2126(866)	-0.001(11) 0.003(10) -0.001(7) -0.001(7) -0.1303(61) -0.6952(36) -0.7069(35) -7.4300(886)				
Dihedr Plane Plane Plane	al angi 1/Plan 2/Plan 1/Plan	es between pla e 2 69.6(4) e 3 55.2(5) e 3 81.1(6)	anes (°) 81.2(4) 39.3(4) 62.1(5)	70.0(4) 48.9(4) 86.5(4)				
"Equation	"Equation of the plane: $M1x + M2y + M3z - D = 0$.							

TABLE 8 Least-Squares Planes^a

shown in Table 1. The intensity data were collected using a CAD4 diffractometer with graphite monochromatized Cu K_{α} radiation. The lattice constants were refined by a least-squares fit of 25 reflections in the θ range 9.9–20.1°. A small decline in intensities of three standard reflections (1, -2, -4; 1,1,-4; 1, 3, 2) was observed: 4.5% during 113.3 hours of exposure time. For that reason, the data file was corrected by use of the DECAY program [27].

The structure was solved by use of the SHELXS-86 program [22]; 2829 reflections with $I \ge 2\sigma(I)$ were used to refine it by full-matrix least-squares using *F*'s (SHELXTL program [28]). All hydrogen atoms were found in a difference Fourier map and set as riding with fixed isotropic thermal parameters (all $U = 0.08 \text{ Å}^2$). Anisotropic thermal parameters were applied for all nonhydrogen atoms. The refinement converged to R = 0.0755 and $R_w = 0.0707$ with the weight $w = 1/[\sigma^2(F) + 0.001521F^2]$ for 660 refined parameters. The largest residual peak in the final difference Fourier map was 0.54 eÅ⁻³. Scattering factors were taken from the International Tables for X-ray Crystallography [23]. Hydrogen bonds, torsion angles, and least-squares planes were calculated by the CSU program [24]. Values of $F_{\rm obs}/F_{\rm calc}$, anisotropic displacement coefficients, and full data including hydrogen atoms are deposited at the Cambridge Crystallographic Data Centre [29].

ACKNOWLEDGMENTS

This work was partially supported by Grant KBN No. PB 0506/P3/93/05 (for A.J.M.). We thank M. Kluge for his assistance during the crystallization tests.

REFERENCES

- M. Sprinzl, T. Hartmann, F. Meissner, I. Moll. T. Vorderwülbecke, Nucleic Acids Res., Suppl., 1987, r53.
- [2] T. G. Hagervall, C. G. Edmonts, J. A. McCloskey, G. R. Björk, J. Biol. Chem., 262, 1987, 8488.
- [3] R. Adamiak, P. Górnicki, Prog. Nucl. Ac. Res. Mol. Biol., 32, 1985, 27.
- [4] K. Murao, H. Ishikura, Nucleic Acids Res., Spec. Publ., 5, 1978, 333.
- [5] S. Yokoyama, T. Watanabe, H. Ishikura, Z. Yamaizumi, S. Nishimura, T. Miyazawa, Proc. Natl. Acad. Sci. USA, 82, 1985, 4905.
- [6] L. L. Kisselev, Prog. Nucl. Ac. Res. Mol. Biol., 32, 1985, 237.
- [7] D. Söll, Experientia, 46, 1990, 1089.
- [8] D. Jahn, E. Verkamp, D. Söll, *T.I.B.S.*, 17, 1992, 215.
 [9] S. Yokoyama, Z. Yamaizumi, S. Nishimura, T. Miurani, *Nucleic Acid. Phys.* 6 (1) 270–2611.
- yazawa, Nucleic Acids Res., 6, 1979, 2611. [10] H. Sierzputowska-Gracz, E. Sochacka, A. Małkiewicz, K. Kuo, Ch. Gehrke, P. F. Agris, J. Am.
- Chem. Soc., 109, 1987, 7171. [11] P. F. Agris, H. Sierzputowska-Gracz, A. Smith, A. Małkiewicz, E. Sochacka, B. Nawrot, J. Am. Chem. Soc., 114, 1992, 2652.
- [12] W. Smith, H. Sierzputowska-Gracz, E. Sochacka, A. Małkiewicz, P. F. Agris, J. Am. Chem. Soc., 114, 1992, 7989.
- [13] V. Dao, D. Guenther, A. Małkiewicz, A. Nawrot, E. Sochacka, A. Kraszewski, K. Everett, P. F. Agris, Proc. Natl. Acad. Sci., 91, 1994, 2125.
- [14] M. Sekine, K. Seio, T. Saton, K. Sakamoto, S. Yokoyama, *Nucleosides Nucleotides*, 12, 1993, 305.
- [15] 15th International tRNA Workshop, Cap d'Agde, France, May 30-June 4, 1993, in Programme and Abstracts, vol. C.II, p. 253 (1993).
- [16] Z. Gałdecki, B. Luciak, A. Małkiewicz, B. Nawrot, Monatsh. Chem., 122, 1991, 487.
- [17] A. Małkiewicz, B. Nawrot, E. Sochacka, Z. Naturforsch., B42, 1987, 360.
- [18] (a) W. Hillen, E. Egert, H. J. Lindner, H. G. Gassen, Biochemistry, 17, 1978, 5314; (b) W. Hillen, E. Egert, H. J. Lindner, H. G. Gassen, FEBS Lett., 94, 1978, 361.
- [19] Z. Gałdecki, D. Adamiak, A. Małkiewicz, E. Sochacka, Technical University of Łódź, 1992, unpublished results.
- [20] Z. Gałdecki, D. Adamiak, A. Małkiewicz, B. Nawrot, Technical University of Łódź, 1993, unpublished results.

- [21] W. Saenger: Principles of Nucleic Acid Structure, Springer-Verlag, Inc., New York, 1984.
 [22] G. M. Sheldrick, G. M. Krüger, R. Goddard:
- [22] G. M. Sheldrick, G. M. Krüger, R. Goddard: SHELXS-86. Crystallographic Computing 3, Oxford University Press, 1985, Oxford, United Kingdom, p. 175.
- [23] International Tables for X-ray Crystallography, Kynoch Press, Birmingham, England, 1974.
- [24] I. Vickovic: Crystal Structure Utility, Programme for the Presentation of Crystal Structure Analysis, Release May, 1988, University of Zagreb, Zagreb, Yugoslavia.
- [25] C. Altona, M. Sundaralingam, J. Am. Chem. Soc., 94, 1972, 8205.
- [26] M. Jaskólski, Acta Cryst., A40, 1984, 364.
- [27] B. A. Frenz: SDP—Structure Determination Package, Enraf-Nonius, Delft, Holland, 1984.
- [28] SHELXTL PC, Release 4.1 (May 1990), Siemens Analytical X-Ray Instruments, Inc., Madison, WI.
- [29] University Chemical Laboratory, Cambridge Crystallographic Data Centre, Lensfield Road, Cambridge CB2 1EW, United Kingdom.